Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

 

Архивы рубрики: An Introduction to Engine Testing and Development

Temperature: The Principle and Application of Thermocouples

In 1821, Thomas Johann Seebeck, a German-Estonian physicist, discovered that if heat is applied to a junction of two metals that form part of an electric circuit, a current flows in the circuit. However, in 1834, Jean Peltier, a French physicist, demonstrated that if a current is passed through a junction of two dissimilar metals,

Instrumentation: Temperature, Pressure, Flow, and Calibration

This chapter is concerned with the importance of instrumentation with regard to tem­perature, pressure, flow, and calibration. In all engine test work, instrumentation is paramount. Unless we measure and control various parameters, it will be impossible to replicate tests at some time in the future. There is no such thing as a finite measurement, be

Tuning

The process of setting the optimum gains for PID to obtain an ideal response from a control system is called tuning. The gains of a PID controller can be obtained by trial and error. Once an engineer understands the significance of each gain parameter, this method becomes relatively easy. In this trial-and-error method, the I

Derivative Response

The derivative component causes the output to decrease if the process variable is increasing rapidly. The derivative response is proportional to the rate of change of the process variable. Increasing the derivative time (Td) parameters will cause the control system to react more strongly to changes in the error term and will increase the speed

Integral Response

The integral component sums the error term over time. The result is that even a small error term will cause the integral component to increase slowly. The integral response will increase continually over time unless the error is zero; therefore, the effect is to drive the steady-state error to zero. Steady-state error is the final

Proportional Response

The proportional component depends on only the difference between the set point and the process variable. This difference is referred to as the error term. The proportional gain (Kc) determines the ratio of output response to the error signal. For instance, if the error term has a magnitude of 10, a proportional gain of 5

The Key to Control Systems

Proportional integral derivative (PID) control is the most common algorithm used in industry. As the name suggests, the PID algorithm consists of the three basic coeffi­cients of proportional, integral, and derivative, which are varied to obtain the optimal response. PID is used as a means of continuous automatic monitoring and adjustment. The basic idea behind

A Transient Test

The salient features of a typical transient test bed application for a “World Rally Cham­pionship Engine” are as follows: • Maximum speed 10,000 rev/min • Maximum torque 1000 Nm • Speed gradient 10,000 rev/min/second • Fuel measurement 180 liters/hour • Cooling capacity 600 kW • Cycle simulation 10 Hz • Standard data acquisition (96 channels,

Predictive Analysis

When testing engines, the ability to predict when a component will fail due to fatigue or wear-out is a prerequisite. This prediction can be brought into play by accelerated rig testing of key components; utilizing intelligent design validation test methods, with much attention paid to pre — and post-test strips; examination and measurement of critical

Some Engine Testing Pointers Pre-Start, Operating the Dynamometer Water Dynamometer

Prior to starting the engine, open the inlet valve fully and the outlet valve slightly. It is almost always advisable to start with a light load, and this may be accomplished by screwing the sluice gates into the dynamometer as far as they will go. The engine now is started. To regulate the load, open