Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

 

Архивы рубрики: Stirling Engines for Low-Temperature Solar-Thermal Electric Power Generation

Technical Drawings for the Three-Phase Stirling Engine Prototype

This appendix contains the engineering drawings to make the three-phase Stirling en­gine prototype. The parts and assemblies are named intuitively to reflect their function within the engine. All assembly drawings contain a BOM to reference the correspond­ing parts. The drawings are ordered first by hierarchy: Assembly drawings precede part drawings. The parts drawings are ordered

Technical Drawings for the Single-Phase Stirling Engine Prototype

This appendix contains the engineering drawings to make the single-phase Stirling en­gine prototype. The parts and assemblies are named intuitively to reflect their function within the engine. All assembly drawings contain a BOM to reference the correspond­ing parts. The drawings are ordered first by hierarchy: Assembly drawings precede part drawings. The parts drawings are ordered

Symmetric Six-Phase Stirling System

For a symmetric six-phase system, according to the general formulation in Eq. (5.10), the stiffness matrix K of the linearization is, TOC o "1-5" h z —c Mp+(b+c) — b 0 0 0 —c Mp + (b + c) — b 0 0 0 0 —c — + (b + c) —b 0 0 K

Gas Spring Stiffness

(B.1) Consider a thermally insulated gas container that is equipped with a sealed moving piston. Without loss of generality, we can assume that the internal and external pressures of the container are initially equal and, hence, the piston is at resting position. The thermal insulation provides an adiabatic boundary condition for the contained gas. Therefore,

Second Order Dynamical System

Dynamical behavior of a mass-spring system which is subject to an external force, Fin, and dry friction force, Ff, is expressed in form of a second order differential equation as, Mx = Fin — Kx — Ff S (x) (A.1) Where x is the position, m is the mass, K is the spring stiffness, and

Future Work

Without a doubt, building a high-power engine and assembling a complete solar — thermal-electric system is the most important task in pursuing the proposed technology. The following paragraphs suggest some areas of research that have the potential to help improve the engine design in many respects and to provide more practical designs and low-cost components

High Power Stirling Engine Design

This dissertation provided a strong basis for the design of a high power Stirling engine that could be a potential candidate for commercial utilization in the proposed solar-thermal — electric technology. The goal is to design a Stirling engine with 2 to 3 kW output power. It is desired to keep the operating frequency below

Conclusions

A promising case for the use of distributed solar-thermal-electric generation was out­lined in this dissertation, based on low temperature-differential Stirling engine technology in conjunction with state-of-the-art solar thermal collectors. Although the predicted ef­ficiencies are modest, the estimated cost in $/W for large scale manufacturing of these systems is quite attractive in relation to conventional photovoltaic

Conclusions

Mathematical modeling of multi-phase Stirling engine systems was presented in this chapter. A symmetric three-phase system was discussed in detail based on eigen-analysis of the corresponding linearization. This analysis proved the self-starting potential of multi- Figure 5.21: Implementation of reverser mechanism within the fabricated three-phase Stir­ling engine prototype. Phase systems relying on Hartman-Grobman theorem and

Reverser Implementation

Figure 5.21 illustrates the implementation of a reverser system within the fabricated prototype. The rigid rods are very light tubes to help the system retain its symmetry (i. e., equal mass and external stiffness for all three engines). All three heaters of the system are (a) (b) Figure 5.20: Simulated piston positions of the three-phase