Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

 

Архивы рубрики: Stirling Engines for Low-Temperature Solar-Thermal Electric Power Generation

Reverser Modeling and Analysis

Gas hysteresis loss is an important dissipation phenomenon for low-temperature free­piston Stirling engines [33, 56]. Increasing the number of phases in a multi-phase system reduces the phase delay between the pistons of each engine. This change, in turn, decreases the fractional volumetric variation inside each engine chamber, which translates into lower gas hysteresis loss. For

Engine Operation

The gas spring hysteresis dissipation was not initially considered in the design and it turns out that it is an important dissipation phenomenon and should be carefully ad­dressed in the low-power Stirling engine design as it hindered the operation of the test system in engine mode. At steady state, the phase delay between the two

Gas Spring Hysteresis

The calorimetric test proved to be an appropriate method for the measurement of the gas hysteresis dissipation as well. A single engine phase is actuated at its pure compression resonant frequency (about 30 Hz) and, hence, the pistons are 180° out of phase with respect to each other. Under this condition, the working fluid is

Heat Pump Operation

A calorimetric transient test is an appropriate method for measuring the amount of the pumped heat in this mode of operation. In a calorimetric test, as stated before, the system Gh   Gk   Qh   Qk   Ghk -AAAr-   Ch   A   Figure 5.13: Electric circuit analogue for the thermal model of

Fluid Flow Friction

The ring-down test turns out to be the most appropriate method to evaluate frictional losses. Figure 5.12 shows the ring-down test for one of the three nylon cantilever hinges. In order to assess the feasibility of the designed flexure, none of the diaphragms (nor the heat Figure 5.12: Ring-down characteristic of the nylon flexure. Exchangers)

Experimental Results

This section summarizes the experimental results obtained with the symmetric three — phase Stirling engine system. The following methodologies have been implemented in assessment of the prototype: • Ring-Down Test A ring-down test is an appropriate way for estimating the various parameters of a simple dynamical system. The system is displaced from its equilibrium and

Actuator

One of the three fabricated magnetic actuators is shown in Figure 5.10. The fabricated prototype engine is shown in Figure 5.11. Magnets are connected to the jaw that is indicted in Figure 5.11 and move as the pistons oscillate. Therefore, as a generator or motion sensor, when the pistons (and hence magnets) move, an alternating

Flexure

A rigid arm, the piston linkage, connects the expansion piston plate of one engine to the compression piston plate of the other. For each piston linkage, a bearing is realized with a nylon cantilever flexure. This flexure has to be designed to be very stiff in the axial and radial directions, but with low loss

Diaphragm Pistons

Mechanical friction is virtually eliminated by replacing moving pistons by diaphragms. Thus, losses associated with surface-to-surface sliding friction and lifetime limitations asso­ciated with mechanical wear are avoided. As a further consequence, lack of static friction enables the engine system to self-start upon application of heat, as discussed in section 5.4. In addition, there is no

Heat Exchangers

Heat exchangers have crucial roles in a Stirling engine system. A good heat exchanger design provides a balance between fluid flow friction and heat transfer characteristics. Heat Figure 5.6: Simulation of the symmetric three-phase Stirling engine system under asym­metric electric loading condition. All three engines maintain their internal viscous and gas spring hysteresis dissipations and