Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

Двигатели Стирлинга

Сайт о двигателях Роберта Стирлинга. История, описание, конфигурация, принцип работы... А также о других двигателях, тепловых машинах, двигателях внешнего и внутреннего сгорания, новинках в машиностроении. More »

 

Архивы рубрики: Stirling Engines for Low-Temperature Solar-Thermal Electric Power Generation

Symmetric Three-Phase Stirling Prototype

The design, fabrication and testing of a symmetric three-phase Stirling engine system is presented in this section. The thermodynamic design parameters of the fabricated three — phase Stirling engine system are tabulated in Table 5.2. Ambient pressure air was selected initially as the working fluid of the Stirling engines in order to avoid difficulties pertaining

Symmetric Three-Phase System

For the symmetric three-phase system, Eq. (5.10) is rewritten as, X1 X 1 Mp+(b+c) —b Xi + d X 2 + —c Mp+(b+c) X3 X 3 -b —c Mp ■   I   2   3   0 (5.14) —c -b Or simply, (5.15) Where d is defined in Eq. (5.9). By applying the Clark’s

Analysis

Based on the above discussion on mathematical modeling, the modal analysis of the linearized multi-phase Stirling engine system will be discussed in this section. Specifi­cally, the symmetrical three-phase system will be considered and analyzed. Discussion on the design, fabrication, and test of a three-phase Stirling engine prototype will follow the theoretical results for comparison purposes.

Linearization

System linearization at the or any of the system equilibria is an effective tool for qualitative analysis of nonlinear system behavior. Origin, x0, is the equilibrium of the multi-phase Stirling engine system defined by differential equations in Eq. (5.6). According to the Hartman-Grobman theorem [54], the qualitative properties of nonlinear systems in the vicinity of

Formulation

An isothermal model [33] is the simplest formulation for thermodynamic behavior of a Stirling engine, and is used in this section to understand the qualitative system behavior. Figure 5.1: Schematic diagram of a multi-phase Stirling engine system. For the z-th Stirling engine that operates within an N-phase system (Figure 5.1), pressure of the working fluid,

Multi-Phase Stirling Engines

Single-phase Stirling engines require two pistons, namely the displacer piston and the power piston, for successful operation. The displacer piston shuttles the working fluid back and forth between hot and cold sections of the engine, and, hence, generates an oscillatory pressure waveform inside the engine chamber. Coupling to the pressure waveform, the power piston moves

Conclusions

Design, fabrication, and measurement results of a single-phase free-piston Stirling en­gine were presented in this chapter. The low-power prototype was designed and fabricated to act as a test rig to provide a clear understanding of the Stirling cycle operation. It helped to identify the key components and the major dissipation sources and to verify the

Engine Operation

Figure 4.17 depicts the assembled Stirling engine test rig. The heater is heated by a voltage-controlled electric heater. The heating element passes through all the heater tubes. By varying the supply voltage of the heating element, one can adjust the input heat and hot side temperature. The engine is designed to operate at ambient temperature

Power Piston

A ring-down test for the power piston while connected to the engine chamber confirms that the power piston resonates with the gas spring at a frequency of about 2.94 Hz. A ring-down test in which the power piston is separated from the rest of the engine, and hence, is only linked to a weak magnetic

Heat Exchangers

Fluid Flow Both ring-down and energy-balance tests are appropriate methods to assess the fluid flow friction losses through the heat exchangers and the tubing. Figure 4.14 shows the ring-down characteristic of the displacer piston in the presence of all the heat exchangers and tubing. The exponential envelope of the ring-down is a clear indication of