КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Перечислим основные особенности работы двигателя:

1. В двигателе Стирлинга происходит преобразование теп­ловой энергии в механическую посредством сжатия постоянно­го количества рабочего тела при низкой температуре и после­дующего (после периода нагрева) его расширения при высо­кой температуре. Поскольку работа, затрачиваемая поршнем на сжатие рабочего тела, меньше работы, которую поршень со­вершает при расширении рабочего тела, двигатель вырабаты­вает полезную механическую энергию.

2. В принципе при наличии регенерации необходимо только подводить тепло, чтобы не допускать охлаждения рабочего тела при его расширении, и отводить тепло, выделяющееся при его сжатии.

3. Необходимое изменение температуры рабочего тела обес­печивается наличием разделенных холодной и горячей полос­тей, по соединительным каналам между которыми под дей­ствием поршней перемещается рабочее тело.

4. Изменения объема в этих двух полостях должны не сов­падать по фазе, а получающиеся в результате циклические из­менения суммарного объема в свою очередь не должны совпа­дать по фазе с циклическим изменением давления. Это — усло­вие получения механической энергии на валу двигателя.

Таким образом, принцип Стирлинга — это попеременный нагрев и охлаждение заключенного в изолированном простран­стве рабочего тела. Чтобы наглядно представить, как этот про­стой принцип реализуется на практике, рассмотрим сначала элементарную систему поршень — цилиндр, в которой рабочее тело изолировано от внешней среды жестким поршнем, меха­нически соединенным с кривошипом (рис. 1.4).

По мере подвода тепла к головке цилиндра давление рабо­чего тела возрастает, и поршень начинает перемещаться впра­во под действием расширяющегося рабочего тела (рис. 1.5).

При расширении рабочего тела давление в цилиндре па­дает. Для компенсации охлаждения рабочего тела при его рас­ширении подвод тепла продолжается, благодаря чему процесс

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.4 Реализация принципа Стир Рис. 1.5. Начальное перемещение

Линга в системе рабочий поршень — поршня.

Цилиндр.

Протекает при постоянной температуре. Когда поршень дости­гает своего крайнего правого положения (нижней мертвой точки), подвод тепла прекращается и начинается охлаждение головки цилиндра с помощью какого-либо внешнего источника (рис. 1.6).

В процессе охлаждения давление продолжает падать. Затем поршень начинает перемещаться влево, сжимая газ. Процесс

Тепло ►

(d) — (а)

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

(B)-tc)

Рис. 1.6. Поршень в нижней мертвой точ­ке.

(b’)-(c)

Рис. 1.7. Фаза сжа­тия.

Рис. 1.8. Завершение рабочего цикла.

Охлаждения при этом продолжается, чтобы компенсировать на­грев при сжатии, так что и сжатие протекает при постоянной температуре (рис. 1.7).

Когда поршень достигает своего крайнего левого положения (верхней мертвой точки) охлаждающее устройство заменяется источником тепла (рис. 1.8).

Эту последовательность можно изобразить на диаграммах термодинамического состояния (рис. 1.9).

Поскольку процесс расширения с нагревом протекает при более высоком среднем давлении, чем процесс сжатия с охла­ждением, двигатель совершает полезную работу Однако такой метод подвода и отвода тепла громоздок и непрактичен, так как теплоемкость материалов, из которых изготавливается го­ловка цилиндра, слишком велика для реализации требуемых
быстрых изменений температуры. Тем не менее основная кон­цепция попеременного нагрева и охлаждения изолированного рабочего тела при различных давлениях для получения меха­нической работы изложена здесь вполне точно.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.10. Работа вытеснительного поршня.

А— первоначальная схема; б — схема Стир­линга; 1—вытесннтельный поршень; 2 — ра­бочий поршень.

Б

Рис. 1.9. Диаграммы термодинамиче­ского состояния: давление — объем (а), температура — энтропия (б).

Объем А

Возникает проблема воплощения этой концепции на практи­ке. Очевидным решением было бы поддерживать на одном тор­це цилиндра постоянную высокую температуру, а на другом — постоянную низкую. Однако в этом случае невозможно было бы использовать систему поршень — цилиндр, упомянутую при описании рабочего цикла, поскольку рабочее те­ло одновременно и получало, и отдава­ло бы тепло в сменяющих друг друга фазах процесса. Роберт Стерлинг пре­одолел эту трудность, введя вытеснн­тельный поршень, или вытеснитель, расположенный последовательно с пер­воначальным поршнем, получившим

Теперь название «рабочий поршень». Вытесннтельный поршень предназначен для перемещения рабочего тела между локально расположенными горячей и холодной полостями (рис. 1.10).

Вытесннтельный поршень свободно размещен в цилиндре, так что рабочее тело может обтекать его со всех сторон, как показано на рис. 1.11, где действие вытеснительного поршня иллюстрируется безотносительно к рабочему поршню.

1

I

I

•J

► -4

W

4

Рис. 1.11. Действие вытес­нителя.

При движении вытеснителя вверх, к горячему концу ци­линдра, нагретое рабочее тело поступает в холодную полость через кольцевой зазор у боковых стенок вытеснительного
поршня. При этом давление рабочего тела вследствие охлажде­ния понижается. В цилиндре отсутствуют клапаны, поэтому, если не принимать во внимание небольшого, практически пре — небрежимого падения давления в кольцевом зазоре вокруг вы — теснительного поршня, давление во всех зонах цилиндра будет одинаковым. При движении к нижней мертвой точке вытесни — тельный поршень заставляет рабочее тело перемещаться через холодную полость и кольцевой зазор вокруг боковой поверхно­сти поршня в горячую полость для подогрева. Поскольку при

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Движении вытеснительного поршня давление у обоих его тор — цев всегда одинаково, на это движение работа не затрачива­ется.

Движение вытеснительного и рабочего поршней не совпа­дает по фазе. Объяснение этого с позиций термодинамики бу­дет дано ниже. Однако уже сейчас нетрудно понять, что если все рабочее тело в какой-то фазе цикла должно быть в горя­чей полости, а в другой фазе цикла — в холодной, то оба порш­ня не могут находиться в одной фазе. Чтобы получить такое не совпадающее по фазе движение поршней, необходим. меха­низм привода, отличный от общепринятого. Пример механизма, использованного самим Стирлингом, показан на рис. 1.12.

Необходим еще один элемент, чтобы получить двигатель Стирлинга в том виде, в каком он известен сейчас. Это реге­нератор, или «экономайзер», как его первоначально назвал Стирлинг. Когда вытеснительный поршень перемещает расши­ряющееся рабочее тело в холодную полость (рис. 1.11), оно должно пройти через горячую полость где из-за продолжаю­
щегося нагрева получает избыточное тепло, которое необходи­мо отвести в холодильник. После того как рабочее тело сжато, оно перемещается в горячую полость через холодную, дополни­тельно охлаждаясь. Следовательно, рабочее тело поступает в горячую полость более холодным, чем требуется, а в холод­ную — более горячим.

Если в кольцевом зазоре вокруг вытеснительного поршня, по которому перетекает рабочее тело, установить сетку из стальной проволоки, то рабочее тело, проходя через этот зазор из горячей полости в холодную, будет иметь бо­лее высокую температуру, чем сетка, и, следовательно, будет отдавать теп­ло этой сетке. В этом случае сетка действует как предварительный холо­дильник, снижая термическую нагруз­ку основного холодильника. После процесса сжатия рабочее тело будет перетекать в горячую полость, нагре­ваясь при прохождении через сетку, т. е. будет вновь получать тепло, ра­нее отданное сетке. Теперь регенера­тор действует как предварительный нагреватель, уменьшая требуемое ко­личество подводимой энергии. Описанная система в целом по­казана на рис. 1.13.

Хотя схема, показанная на рис. 1.13, находит практическое применение во многих двигателях, проблема быстрой передачи энергии остается нерешенной, поскольку необходимо еще пре­одолеть тепловую инерцию стенок цилиндра. При проведении работ по усовершенствованию двигателя Стирлинга фирмой «Филипс» были применены трубчатые теплообменники для на­гревателя и холодильника, и, хотя при этом потребовалось уплот­нить вытесннтельный поршень, основная цель была достигнута. Полный рабочий цикл теперь можно описать с помощью рис. 1.14. На рис. 1.14 легко различаются составляющие процессы рабо­чего цикла, изображенного на диаграмме давление — объем (рис. 1.9, а).

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

. регенерашо’р

Рис. 1.13. Схема двигателя Стирлинга, пригодная для практического применения.

На рис. 1 14, а рабочий поршень находится в крайнем ниж­нем положении, вытеснитель — в крайнем верхнем положении, и все рабочее тело заключено в холодной полости. Затем под действием внешних сил рабочий поршень начинает переме­щаться вверх, сжимая рабочее тело в холодной полости, при­чем температура рабочего тела поддерживается на минималь­ном уровне. В точке 2 (рис. 1.15) вытесннтельный поршень все еще находится в крайнем верхнем положении, рабочий
поршень заканчивает свое движение вверх, и процесс сжатия за­вершается (рис. 1.14,6). Рабочий поршень остается в своей верхней мертвой точке, а вытеснительный поршень начинает движение вниз, перемещая рабочее тело в систему холодиль­ник — регенератор — нагреватель и далее в горячую полость. Объем рабочего тела в этом процессе остается постоянным, а давление возрастает. В процессе между точками 2 и 3 рабоче­му телу передается тепло от регенератора. Точка 3 соответ­ствует пребыванию всего рабочего тела в горячей полости, при

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

А 6 в г

Рис. 1.14. Полный рабочий цикл двигателя, работающего по схеме фирмы «Филипс».

Этом рабочий поршень все еще остается в своей верхней мерт­вой точке. Следует отметить, что вытеснительный поршень в точке 3 еще не достиг своего крайнего нижнего положения.

Теперь рабочее тело, находясь в горячей полости, получает тепло от трубчатого нагревателя и расширяется. Воздействуя на вытеснительный и рабочий поршни, расширяющееся рабочее тело заставляет их совместно перемещаться вниз, пока они не займут свое крайнее нижнее положение. В процессе между точ­ками 3 и 4 совершается положительная работа. Точка 4 соот­ветствует пребыванию обоих поршней в своих нижних мертвых точках. Рабочий поршень продолжает оставаться в этом поло­жении, а вытеснительный поршень перемещается вверх, вытес­няя расширившееся рабочее тело через систему нагреватель — регенератор — холодильник в холодную полость. При этом ра­бочее тело отдает остаток своего тепла регенератору. В процес­се 4 — 1 объем остается неизменным, а давление падает. Так осуществляется цикл Стирлинга в том виде, как он показан на двух диаграммах состояния (рис. 1.15).

Сравнивая движение поршней относительно друг друга в последовательных процессах (рис. 1.14), легко заметить, что их движение на протяжении всего цикла не совпадает по фазе.

Для обеспечения протекания такого цикла в соответствии с его описанием, приведенным выше, необходимо прерывистое перемещение поршней. Этот вывод можно наглядно проиллю­стрировать диаграммой перемещений поршней (рис. 1.16).

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.15. Термодинамические диаграммы состояния идеального цикла Стир­линга.

Горячая полость расширения определяется переменным объемом VE между головкой цилиндра и верхним торцем вы­теснительного поршня. Она об­разуется исключительно благо­даря перемещению вытесни­тельного поршня. Холодная по­лость сжатия определяется пе­ременным объемом Vc между нижним торцем вытеснитель­ного поршня и верхним тор­цем рабочего поршня. Объем нагревателя, холодильника, ре­генератора и примыкающих к ним патрубков является не­рабочим объемом и называет­ся объемом мертвого простран­ства (мертвым объемом) VD. Любой мертвый объем умень­шает мощность, вырабатывае­мую двигателем, и его необходимо сводить к минимуму, допу­скаемому конструктивными особенностями двигателя. Однако в некоторых условиях путем увеличения мертвого объема можно увеличить КПД двигателя.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

> Угол поборота крисошипа

Рис. 1.16. Законы движения поршней при воспроизведении идеального цик­ла.

Теперь следовало бы рассмотреть проблемы термодинами­ки, газодинамики и теплообмена, которые необходимо решить для реализации принципа Стирлинга. Не ппеодолены также
трудности, связанные с высокой сложностью механизма при­вода и необходимостью обеспечить достаточную балансировку двигателя.

На рис. 1.16 показана зависимость изменения объема от угла поворота кривошипа, при выполнении которой реализует­ся идеальный цикл Стирлинга. Основной функцией механизма привода является наиболее точное воспроизведение этой зави­симости. Однако полное удовлетворение требований термоди­намики возможно только при прерывистом движении поршней, а механическое устройство не в состоянии точно воспроизвести такое движение. Хотя в принципе и можно создать механизм, воспроизводящий закон изменения объема, близкий к идеаль­ному, при его проектировании необходимо учитывать и другие факторы, а именно: простоту конструкции, компактность, дина­мические факторы и возможность установки системы уплот­нения.

Чем больше в механизме привода движущихся частей, тем меньше, как правило, механический КПД; при этом преимуще­ства, обусловленные воспроизведением закона изменения объ­ема, близкого к идеальному, могут быть сведены на нет низ­ким общим КПД двигателя. Кроме того, большое число дета­лей приводит к повышению стоимости изготовления механизма привода, общей стоимости агрегата и затрат на эксплуатацию, а также к снижению надежности по сравнению с механизмами привода обычных двигателей внутреннего сгорания. Простран­ство, в которое должен «вписываться» двигатель Стирлинга, также может быть определяющим фактором, а это поставит конструктора перед выбором, что предпочесть: громоздкий ме­ханизм привода, обеспечивающий почти идеальный закон изме­нения объема, или более компактный механизм, но воспроизво­дящий закон изменения объема с меньшей точностью.

Динамические факторы, которые необходимо принимать во внимание при конструировании, можно разделить на две груп­пы: связанные с динамической нагруженностью и связанные с динамической балансировкой движущихся частей двигателя. Динамические нагрузки оказывают решающее влияние на оп­ределение основных размеров двигателя Стирлинга. Термоди­намический анализ работы двигателя предъявляет определен­ные требования к рабочему объему, длине шатуна и др., одна­ко количественно эти требования выражены безразмерными параметрами и, следовательно, не устанавливают каких-либо реальных размеров. Определение размеров этих компонентов основывается на последующих динамических расчетах, включа­ющих определение нагрузок на подшипники, величины изгиба­ющего момента на шатуне и т. п. Двигатель Стирлинга благо­даря используемому в нем замкнутому циклу по своей приро­
де является бесшумным, и если в нем предусмотреть свобод­ный от вибраций (а следовательно, динамически уравновешен­ный) механизм привода, то потенциальные возможности его практического применения существенно расширятся. Некото­рые механизмы привода, разработанные для двигателей Стир­линга, удовлетворяют этим требованиям.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.17. Кривошипно-баланснрный механизм привода [16].

1 — нагреватель; 2— регенератор; 3 — холо­дильник; 4 — вытесннтельный поршень; 5 — рабочий поршень; 6—балансир; 7 — виль­чатый шатун.

И наконец, в двигателях Стирлинга большого литража воз­никает проблема уплотнений, отделяющих цилиндры двигате­ля от картера и изолирующих картер от избыточного давле­ния. Таким образом, мы перечислили основные факторы, влия­ющие на выбор механизма привода двигателя Стирлинга.

В двигателях Стирлинга чаще всего используются: криво — шипно-балансирный механизм, ромбический привод, косая шайба и кривошипно-шатунный механизм.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.18. Ромбический привод. 1—траверса рабочего поршня; 2—-синхро­низирующее зубчатое колесо; 3—траверса вытеснительного поршия.

Первым в двигателе Стирлинга был использован криво — шипно-балапсирпый механизм привода (рис. 1.17), в котором балансир сочленяется посредством двух рычагов с рабочим и вытеснительным поршнями, а рабочий поршень приводится не­посредственно от коленчатого вала. При таком типе привода неизбежно избыточное давление в картере, и поэтому он при­годен только для небольших двигателей. Такой привод не обес­печивает также динамической балансировки одноцилиндрового двигателя.

Увеличение мощности двигателя Стирлинга в процессе его совершенствования привело к необходимости изолировать ци­линдры от картера, чтобы избежать избыточного давления в картере. Эту проблему решает установка ромбического приво­да (рис. 1.18), разработанного фирмой «Филипс» в 50-е годы. Преимуществом такого привода является также возможность динамической балансировки даже в случае одноцилиндрового двигателя. Основными его недостатками являются сложность ме­ханизма, поскольку он состоит из большого числа движущихся частей, трущихся по­верхностей и т. п., и наличие в механизме двух находящихся в зацеплении зубчатых колес.

Косая шайба (рис. 1.19) применяется главным образом в двигателях, предназна­ченных для установки на автомобилях, где решающим фактором является компакт­ность силового агрегата. Такой механизм динамически сбалансирован при определен­ном угле наклона шайбы. Он также позво­ляет легко изолировать цилиндры от кар­тера. Однако в случае установки двигателя на автомобиль возникает проблема надеж­ности уплотнений в условиях быстрой сме­ны большого количества циклов. Косая шайба позволяет также управлять мощно­стью двигателя изменением угла наклона шайбы, что ведет в свою очередь к изме­нению величины хода поршней двигателя. В этом случае двигатель динамически сба­лансирован только при одном значении угла наклона шайбы.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.19. Двигатель с косой шайбой. 1—горелка: 2 —поршень; 3—днафрагменное уплот­нение; 4 — косая шайба.

Кривошипно-шатунный механизм (рис. 1.20) в течение мно­гих лет используется в двигателях внутреннего сгорания. Он исключительно надежен, и к настоящему времени накоплен большой опыт его эксплуатации. Этот механизм широко при­меняется в двигателях Стирлинга двойного действия как с крейцкопфом, так и без него. Преимуществами механизма явля­ются его надежность и простота изготовления, однако динами­ческая балансировка двигателя с таким механизмом привода практически недостижима.

Кривошипно-шатунный механизм, как мы могли убедиться, не является простым решением проблемы привода в случае, когда рабочий и вытеснительный поршни последовательно рас­положены в одном цилиндре. Однако такой механизм широко

*

Применяют в компоновочной модификации двигателя Стирлин­га со сдвоенными цилиндрами. Первоначально в такой модифи­кации использовали рабочий и вытесннтельный поршни, распо­ложенные в двух цилиндрах, соединенных коротким патрубком (рис. 1.21).

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.20. Крниошнино-шатунпим мс — Рис. 1.21. Двигатель конфигурации

Ханизм. гамма с рабочим и вытеснительным

I — рабочий поршень; 2 — вытесннтельный поршнями,

Поршень. I — соединительный канал.

В XIX в. такой двигатель был построен Хенричи и Робин­соном [5]. В литературе по двигателям Стирлинга, начиная с (>0-х годов нашего века и позднее, этот вариант часто назы­вают гамма-конфигурацией. Дальнейшие усовершенствования

Двигателя со сдвоенными цилиндрами были предложены Рай — дером [6], что привело к существенному увеличению удельной мощности по сравнению с другими модификациями двигателя Стирлинга, созданными к тому времени. С этого времени дви­гатели со сдвоенными цилиндрами получили всеобщее призна­ние. В модификации Райдера применены два полностью уплот­ненных в цилиндрах поршня вместо системы поршень — вытес­нитель. Теплообменники типа «нагреватель — регенератор — холодильник» встроены между двумя цилиндрами, образуя со­единительный канал (рис. 1.22).

Такая компоновка расширила возможности создания раз­личных конфигурации двигателя, реализующих принцип Стир­линга; например, цилиндры могут располагаться один против другого горизонтально или вертикально, параллельно один другому, в форме буквы V (рис. 1.23) и по другим схемам.

Все двигатели, о которых говорилось выше, по своему об­щему принципу действия являются двигателями простого дей­ствия. Следует подчеркнуть, что это название относится к дви­гателю, а не к поршню, поскольку, несмотря на то что
вытеснительныи поршень может производить двойное действие, когда его верхняя и нижняя поверхности управляют перемеще­нием газа, двигатель в целом при этом все еще может опреде­ляться как двигатель простого действия. Термины «двигатель

Д

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Гл

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.22. Двигатель Стирлинга (мо­дификация Райдера). 1 — горячая полость; 2—холодная полость.

Рис. 1.23. Различные конфигурации двигателя Стирлинга.

А — параллельные цилиндры; 6 — противо­положное расположение цилиндров; в—V-образное расположение пнлнндров.

Простого действия»» и «двигатель двойного действия» примени­тельно к двигателям Стирлинга используются для характери­стики двигателя в целом. Например, как показано ниже, не-

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.24. Двигатель Стирлинга, работающий по принципу двойного действия (модификация Райдера).

®

Сколько агрегатов простого действия можно объединить в дви­гатель двойного действия. Этот способ мы проиллюстрируем на примере расположения цилиндров, предложенного Райдером и называемого также компоновочной модификацией альфа (рис. 1.24).

Цикл простого действия обеспечивается совместным дей­ствием верхней поверхности одного поршня и нижней поверх-

Ности другого поршня в соседних цилиндрах. Рабочее тело цир­кулирует между этими двумя цилиндрами. Оно не перемещает­ся через всю систему — от первого цилиндра до четвертого. Таким образом, поршень в каждом цилиндре выполняет функ­ции как рабочего, так и вытеснительного поршня, и при этом

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Каждый поршень одновременно участвует в двух рабочих циклах. Следовательно, в четырехцилиндровой компоновке (рис. 1.24) одновременно протекают четыре отдельных цикла:

1) lh — 2с;

2) 2h —Зс;

3) 3h —4с;

4) — 4h — 1с.

Этот тип двигателя Стирлинга был первоначально предло­жен английским инженером Сименсом [7] и независимо от него голландскими инженерами Рини и Ван-Вееном в период их работы в фирме «Филипс», где он был усовершенствован. Двигатель двойного действия особенно эффективен среди ■устройств, вырабатывающих механическую энергию, из-за своей высокой удельной мощности, получаемой благодаря тому, что при каждом обороте коленчатого вала в каждом цилиндре поршень совершает полный рабочий ход.

3 Зак. 839

Ч/

Сказанное означает, что в двигателе двойного действия пор­шень выполняет две функции (или имеет двойную функцию):

1) заполнение рабочим телом двух полостей переменного объема и вытеснение рабочего тела из этих полостей;

2) передачу усилия на выходной вал.

Двигатели Стирлинга двойного действия неизбежно должны быть многоцилиндровыми, поскольку для получения сдвинутых по фазе процессов расширения и сжатия (необходимость тако­го сдвига отмечалась ранее) требуется не менее трех порш­ней. На практике же применяются обычно не менее четырех поршней, соединенных с одним коленчатым валом, причем соседние поршни дей­ствуют совместно в паре, чем и до­стигается двойное действие. Меха­низмы привода двигателей двойного действия должны. выполнять упомя­нутые выше две функции. Наибо­лее подходящим для этого представ­ляется обычный многоопорный ко­ленчатый вал рядного двигателя

Рис. 1.26. Соосная конфигурация ]РИС" L25)- Этот тип механизма осо — двигателя двойного действия. бенно подходит для крупногабарит­ных силовых агрегатов.

Лучшую компактность обеспечивает расположение ци­линдров в квадрате, так называемое соосное расположение (рис. 1.26), которое позволяет не только использовать общую систему сгорания, но и применять различные типы механизмов привода. Большинство пригодных для таких двигателей типов механизмов привода представляет собой модификации криво — шипно-шатунного механизма, однако фирмы «Филипс», «Дже­нерал моторе» и «Форд» потратили значительные усилия на со­вершенствование механизма с косой шайбой. Оптимальная кон­струкция привода этого типа обеспечивает механический КПД. превышающий 90 %.

Конфигурации двигателя Стирлинга в сочетании с различ­ными механизмами привода показаны на рис. 1.27. Разумеется, основанием для выбора того или иного механизма привода яв­ляется не только его компактность, но и другие факторы. Эти факторы подробно рассмотрены в разд. 2.5.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Во всех до сих пор рассмотренных двигателях использова­лись механизмы привода, в которых поршни жестко соединены друг с другом с помощью различных кинематических звеньев, а эти звенья в свою очередь жестко связаны с выходным ва­лом, служащим для передачи механической энергии от двига­теля. Двигатель Стирлинга может работать и без механической
. ии Hi между поршнями. В этом случае рабочий и вытеснитель — iii. iii поршни называются свободными поршнями. Эта концеп­Ции может быть использована не только в двигателях Стар­инна, однако только применительно к таким двигателям ее п. чоп. успешно реализовать. Впервые ее воплотил в реально

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

1

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

В¥

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

В

V)

I‘m I Ч Mi………….. и.Im приводи, применяемые в двигателях Стирлинга.

||||||||’||||||ми<| ни rviniuil; t> ромбический; в — дезаксиалышй крнвошипно-шатунный; | . inn nil iii. itiiiiuV, l кршшшшшо-кулисный; e— крнвошипно-балансирный (механизм г. . .1
связанных с поршнями. Шток вытеснительного поршня — по­лый, открытый со стороны своего нижнего торца, так что ра­бочее тело, находящееся внутри вытеснительного поршня, по­стоянно сообщается с рабочим телом в так называемой буфер­ной полости, где все время поддерживается постоянное давле­ние. Эта полость служит газовой пружиной и, как будет пока­зано ниже, выполняет функцию, аналогичную функции коленча­того вала в обычном двигателе Стирлинга.

Положение вытеснительного и рабочего поршней в начальный момент рабочего цикла показано на рис. 1.29, а весь цикл последо­вательно показан на рис. 1.30— 1.32. В начальном положении давление и температура рабоче­го тела во всем агрегате одина­ковы, причем давление равно его величине в буферной полости рв По мере передачи энергии рабо­чему телу в расширительной по­лости от трубок нагревателя тем­пература рабочего тела возрас­тает, что влечет за собой воз­растание давления до величины Pi (состояние 1). Это в свою оче­редь заставляет вытеснительный и рабочий поршни начать свое движение вниз.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.28. Свободнопоршневой дви­гатель Стирлинга.

I—полость расширения; 2— вытесни­тельный поршень; 3 — полость сжатия; 4 — газовая пружина; 5 — свободный поршень компрессора; 6—полость компрессора; 7 — нагреватель; 8 — реге­нератор; 9—холодильник; 10 — шток вытеснительного поршня; II—рабочий поршень с корпусом вытеснителя.

Чтобы двигатель развивал полезную мощность, необходимо обеспечить сдвиг по фазе движений обоих возвратно-поступа­тельных элементов. Поэтому вытеснительный поршень имеет меньшую массу, чем рабочий. Воздействие рабочего тела на рабочий и вытеснительный поршни приблизительно одинаково, однако из-за меньшей массы вытеснительный поршень движет­ся с большим ускорением. Благодаря этому рабочее тело вы­тесняется из полости сжатия и по соединительному каналу (в котором может находиться регенератор) перемещается в го­рячую полость, вызывая дальнейшее повышение давления; со­ответственно увеличивается разность давлений относительно давления в буферной полости, создающая движущую силу. В конечном счете вытеснительный поршень вступает в контакт с рабочим поршнем (состояние 2), и дальнейшее движение вниз оба поршня совершают совместно.

Очевидно, что, как только оба поршня соединились, вытес — m мне рабочего газа из холодной полости сжатия прекращает — » я п соответственно прекращается поступление газа в расши — 1

I s

Давление в буферной полости

Рв

—►Время

I’m I "I I Id. iu/ki fiih — поршнем н начальный момент рабочего цикла свободно-

II |1|||||> lull и НИИ ИГ.1Я < "г1111.’11111[ .1.

I | Г1 I I II мп II. 1 MI’HI lll. nl III) МП и. Л буферная полость.

1>и ItЦ. мHi Пи 1’и Ii. | ■ I Mi I момента давление в двигателе на­Чиним н.| I.Mi. In I.I |I.IiIiiIiPciniРабочего тела Однако это ми мчим in I i mi’ iiprni. iiii. ier давление в буферной полости, и

I 7

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

—► Время

I’m 1.4(1 11;1ч;1л1.м;1и фаза рабочего цикла свободнопоршневого двигателя 1 I пр ими,1.

—«. Бремя

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.31. Самоподдерживающаяся фаза рабочего цикла свободнопоршневого двиглтеля Стирлинга.

— 1

Время

П1>|1Н1пп продолжают двигаться вниз (состояние 3). Процесс расширения продолжается до уравнивания давления во всех ип. иктях (состояние 4). В этот момент начальная часть цикла ик. шчпвается. Однако расширение продолжается благодаря инерции вытеснительного и рабочего поршней, и, следователь­но, вновь появляется разность давлений между рабочими по­лостями и буферной полостью, но уже противоположного зна­ка. Появляется и активная сила, направленная вверх, которая

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.32. Полный рабочий цикл свободнопоршневого двигателя Стирлинга. 1 — горячая полость; 2— холодная полость; 3 — буферная полость.

Сначала лишь замедляет направленное вниз движение возврат­но-поступательно движущихся элементов. Поскольку вытеснн­тельный поршень легче рабочего, он останавливается быстрее, отделяясь от рабочего поршня; при этом вновь начинает обра­зовываться полость сжатия. Рабочий поршень продолжает дви­гаться вниз и после остановки вытеснительного поршня (со­стояние 5), при этом рабочее тело начинает перетекать из рас — Ширшелмюи полости в полость сжатия, вызывая дальнейшее imi. hi’ быстрое падение давления в рабочих полостях и соот — III-11-1 nyioni. ee увеличение направленной вверх силы, действую­Щем на поршни. #

Иы геенн гельный поршень теперь очень быстро перемещает — » » и in рмиою часть цилиндра, вытесняя дополнительное коли — 411 ню рабочего тела из расширительной полости в полость I /К, м и» Наконец, вытесннтельный поршень достигает своего конечного положения (состояние 6) и остается в этом положе­нии нее время, пока давление в буферной полости превышает ми. ieНпе рабочего тела. Тем временем рабочий поршень, дой — III in своего крайнего нижнего положения (состояние 7), начи — и. h i перемещаться вверх, сжимая рабочее тело, заключенное Mi I i верхней поверхностью рабочего поршня и нижней по — ||| pMnu’ii. ii) in, I гее нательного поршня. В процессе сжатия дав — II щи раоочею тела возрастает по сравнению с давлением в ||п piiiiii По. кнмп п в результате возникает сила, перемещаю — 1н, in miieeiini(.цапли поршень вниз. Изолированное в рабочем ним ме рабочее тело перетекает в полость расширения, сооб — IIIни ими мппе п. ному поршню дополнительное ускорение, под Lelii |пнем ыиорого он догоняет рабочий поршень (состоя — IIiii М| la им |>,|(нI’niii цикл повторяется.

IniiiiM ini|iii him, рабочий цикл сноболпоноршневого двигате — hi < шр ими I ночш полностью идентичен циклу двигателя, в I. пиром p. ioiiMim и ныкчииге. и.иын поршни механически свя — I. MII. I upuiioiiiiiiiiiuM Mi xaiiii Imom обычного типа. Этот вывод не I пинком иео/китан Ун и. ям hil l, изучая ромбический привод, м 1.1 и<inn. I. ч Iо дннга ie. ii. может работать и при отсутствии ме- .1 Ii И 1М. т привода, а один из студентов Била впервые построил птп пщощпп свободнопоршневой двигатель [9]. Конфигурация ныитшпельпый поршень — рабочий поршень» в свободно — iiiipiiiiienoM двигателе, по существу, является колебательной си — iieMi. H масса — пружина, и эта система настраивается на ра­ню г резонансной частотой, которая и является рабочей ча — I иной ишгателя. Однако необходимо заметить, что двигатель liii ia может работать и в таком режиме, при котором вытесни — h и. in, hi поршень будет совершать не простые гармонические (| пни-пичальные) колебания, вызываемые резонансом, а коле- оання. график которых имеет более прямоугольную форму. I’. ном случае двигатель работает в так называемом режиме наш банг». Это название, может, и не строго научное, очень П. И.1ЯДИО отражает физическую природу работы двигателя.

Как и двигатель Стирлинга с обычным кривошипным при­ми юм, свободнопоршневой двигатель Стирлинга имеет различ­ные модификации, определяемые методами отбора мощности, ра ншваемой двигателем. Классификация этих модификаций
часто вызывает затруднения, так как, несмотря на название, в некоторых случаях свободным является только вытеснитель­ный поршень, а в других — движущийся цилиндр. Во всех слу­чаях рабочий цикл одинаков, однако динамика движущихся ча­стей различна, что связано с различными модификациями си­стемы масса — пружина. Попытаемся обойти эти затруднения двумя путями: во-первых, используя определение, которое про­сто констатирует, что свободнопоршне — вым двигателем Стирлинга называется двигатель, в котором отсутствует механи­ческая связь между элементами, совер­шающими возвратно-поступательное дви­жение; во-вторых, мы дадим краткое опи­сание трех существующих модификаций свободнопоршневых двигателей. Первые две — это двигатели Била, третья пред­ставляет собой двигатель со свободным вытеснителем, известный также как «ха­руэллская машина».

Если считать схему на рис. 1.28 и 1.29 основной формой двигателя Била, то главной проблемой такого двигателя ста­новится отбор и использование развивае­мой им мощности. Один метод представ­ляется особенно эффективным. Он заклю­чается в превращении рабочего поршня в постоянный магнит. Если разместить вокруг цилиндра обмотку, то при пере­мещении поршня внутри обмотки будет генерироваться электри­ческий ток. Фактически устройство в этом случае будет линей­ным генератором переменного тока (рис. 1.33), и его можно классифицировать как двигатель Била, буквально соответствую­щий названию свободнопоршневой.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.33. Свободнопорш­невой двигатель Стир­линга как линейный гене­ратор неременного тока.

I—ленточный кабель, 2 —-под­вижная катушка; 3 —магнит; 4 —рабочий поршень; 5 —вы­теснитель.

Цилиндр двигателя также можно использовать в качестве элемента, передающего мощность, если сделать цилиндр исклю­чительно легким, а поршень — исключительно массивным. Поршень в этом случае будет действовать как опора, оставаясь практически неподвижным, а вытеснитель и цилиндр станут свободно перемещаться. Тогда цилиндр можно использовать в качестве постоянного магнита или в более привычном вариан­те присоединить к рычагу привода гидравлического насоса (рис. 1.34). Гидронасос в свою очередь можно использовать для привода гидромотора, что делает возможным установку свободнопоршневого двигателя на автомобиле [10]. Однако, несмотря на множество возможных вариантов применения сво­боднопоршневых двигателей, наиболее перспективным являет-

I ii использование такого двигателя в качестве привода гидро — иагпга. 15 эгом направлении и проводятся многочисленные и 1 ппипмг разработки.

I im одним типом свободноноршневого двигателя является ирмолкхапический генератор (ТМГ). Этот вариант — один из

Выпуск

Отработавших газос г if.’ за— Топливо

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

I’ii. i и | ниГщдшищршщ’ИоП двигатель Стирлинга как насос f 104].

| .пи.-, vii’1"1ги-1111<-; ‘ полость газовой пружины в поршне; 3 — опорная пружина

Mi I и и 11. I I м и р> и.| г. п.. .> регенератор; G — вытеснитель; 7 — холодильник; 8 — напра ■

Hill МЦ..1. им!.-.-iiiiii-.ni па плотной посадке; 9—поршень на плотной посадке;

I" | ii г.11.1. II Ь’рМггнзиропанный цнлнндр, совершающий колебания,

I in I | .i iii. ii|i|. м м. n. u-ог. г, 12 инерционная масса; 13 — резиновые дисчи

1|Н’|.|.р >■ 41.1 II I I

11 vi i. i ммм пени, | i. i ip. iiiiiT. niiiUN группой сотрудников Центра im iiiiMiiun >iic111 им и Харуэлле (Англия) под руководством Км Яроори. 1МГ, 1МИ харуэллском машине, как его иногда мл ii. iuaioi. иомлощена идея свободных поршней, однако рабочий inipiiiem, здесь заменен металлической диафрагмой, и упругость Mcia. i.ia усиливает действие газовой пружины. Схема этой мо — пп||||кац|ш показана на рис. 1.35.

Вместо поршня, перемещающегося в цилиндре вверх и вниз, в ТМГ установлена металлическая диафрагма, обычно изготав­ливаемая из нержавеющей стали. Эта диафрагма колеблется под действием изменяющегося давления рабочего тела. С диаф­рагмой жестко связан постоянный магнит, который колеблется в обмотке генератора, возбуждая электрический ток. Действие пружины, соединенной с вытеснителем, дает возможность си­стеме совершать резонансные колебания при частоте, равной

I обмотки; 2 — магнит; 3 — диафрагма; 4 — вытеснитель; 5—источник тепла; 6 — теплоизоляция.

Рис. 1.36. Современная конструкция ТМГ с газовой горелкой.

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.35 Схема термомеханического генератора.

I—радиатор; 2 — охлаждающий змеевик; 3—вытеснитель; 4 — якорь; 5 — диафрагма; 6 — пружина; 7—горелка.

Частоте собственных колебаний системы. Частота колебаний легко регулируется подбором пружины и движущихся масс, что позволяет «подстроиться» под любую частоту в системе элек­троснабжения. Первоначально ТМГ предполагалось использо­вать в сочетании с источником тепла на радиоактивных изото­пах, но в настоящее время в таких двигателях используют про — пановые горелки (рис. 1.36).

Замкнутый металлический цилиндр, содержащий рабочее тело, нагревается со стороны днища пропановой горелкой и охлаждается с внешней стороны диафрагмы, расположенной в верхней части цилиндра, охлаждающим змеевиком. Рабочий цикл полностью идентичен циклу двигателя с рабочим и вы — теснительным поршнями, за исключением того, что здесь вытес­нитель приводится в действие пружиной, расположенной между ним и корпусом цилиндра. Диафрагма совершает колебания с амплитудой, не превышающей нескольких миллиметров, ноэто-
м (. 1я приведения в действие вытеснителя появилась необхо — I и мое I ь установки пружины.

Все спободнопоршневые устройства легко герметизируются, ииски. п.ку из них не выступают движущиеся детали, например 111.11 мы п т. п. Можно обойтись и без поршневых колец, сведя к минимуму зазоры между движущимися частями за счет жест­ких ишусков. Отпадает необходимость в трубчатых нагревате — 1я, мня они и могут быть использованы. Появляется возмож — Ц|» и. использования регенерирующего действия кольцевого за- шра никрм вытеснителя, так называемой щелевой регенера­ции lli ск. иапного следует, что свободнопоршневые устройства

Йг

1_

ПТЙ гэЕ

13

2

С

/ V/

I‘ll! I I/ ‘ м мп пии III II ‘I’ III iii I. Illll •

I i << |i»i ‘i-ttt ii<i ми и *………….. .. …………… in.. i i|imi. i iiiji44-iiihv.’hi; 4—ныходная труба.

Im mihhiim in минным ap. iMi рпешкам сходны с двигателями 1 iup nun, I и 11 in ршшача. п.пых вариантах.

It и pi н[г( ч с район,I над устройствами, действующими по и и к. I < I пр. шпга, группа ученых из Харуэлла помимо ТМГ |I.I ipaiuiI ала новый тепловой двигатель «Флюидайн», относя — пиин я к классу двигателей Стирлинга с двумя поршнями (дви — I л 11Iям Райдера). Отличительной особенностью нового двига — имя является изменение рабочего объема вследствие пере — мг i не 11 п я столбов жидкости, а не поршней, изготовленных из nirpiux материалов (рис. 1.37).

< >i повой двигателя «Флюидайн» являются две U-образные |рпы (которые могут быть изготовлены из стекла), связанные

< фсмя рабочими полостями, соединенными между собой. Что — iii. i понять принцип работы этого двигателя, допустим, что жид — Mirib в нем невязкая. Допустим также, что U-образной трубы

< D не существует и что холодная полость герметизирована. Когда жидкость в U-образной трубе А — В (трубе вытесните — 1я) перемещается по часовой стрелке, левый столб жидкости поднимается, горячий газ перемещается в холодную полость, и явление рабочего газа понижается. Когда же столб жидкости
движется против часовой стрелки, холодный газ возвращается в горячую рабочую полость, и давление газа возрастает. Та­ким образом происходят циклические изменения объема и дав­ления, но полезной работы в этом процессе не производится. Однако при наличии выходной трубы появляется эффект изме­нения суммарного объема газа при его колебаниях и так же, как и в других двигателях Стирлинга, при наличии меньшего чем 180° сдвига по фазе колебаний вытеснителя относительно колебаний выходного элемента возникает термодинамический цикл, в котором вырабатывается полезная работа. Эта полез­ная работа передается на мениск С столба жидкости в выход­ной трубе. Колебания столба жидкости в выходной трубе яв­ляются вынужденными и вызываются разностью давлений в двух рабочих полостях — С и D, в то время как колебания столба жидкости в трубе вытеснителя являются свободными, поскольку на мениски А и В действует одно и то же давление. Нетрудно заметить, что в случае вязкой жидкости ее колеба­ния в трубе вытеснителя постепенно бы затухали. Причиной стабильной непрерывной работы двигателя «Флюидайн» явля­ется «перекачка» энергии вынужденных колебаний в выходной трубе к свободным колебаниям в трубе вытеснителя. Эта энер­гия компенсирует действие вязкого трения и поддерживает устойчивые колебания. Существует по меньшей мере три наи­более распространенных способа перекачки энергии:

1) с помощью разности давлений (рис. 1.38, а);

2) с помощью качающегося стержня (рис. 1.38,6);

3) с помощью реактивной струи (рис. 1.38,в).

В двигателе «Флюидайн», использующем способ перекачки энергии с помощью разности давлений, в отличие от схемы, рассмотренной выше, холодная полость выходной U-образной трубы совмещена с холодной полостью вытеснителя. Столбы жидкости, связанные с холодной и горячей полостями, разли­чаются по длине и, следовательно, имеют разные частоты соб­ственных колебаний. Рабочая частота всей системы заключена между частотами собственных колебаний горячего и холодного столбов жидкости. Возбуждающая сила, поддерживающая ста­бильные колебания, обусловлена разностью давлений на от­крытом торце выходной трубы и в рабочем газе.

Система с качающимся стержнем имеет пружину, с по­мощью которой поддерживается равновесие системы относи­тельно фиксированного шарнира. В процессе работы колебания в выходной трубе вызывают смещение центра тяжести систе­мы относительно его первоначального положения и поворот си­стемы относительно шарнира. При сжатии и растяжении пру­жины возникает восстанавливающая сила, действующая на си-

"1 Г I I

__ I

ГгД


Сила, поЗЗерииеающая колебания

Ч 1

II

J L

II

-$77

Т

3

^. /

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Тепло

V

12 |

L

И

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

_ J

Реактивная струя,

Побйержиоаюш, а«

Колебания

: >

I’m’. 1.38. Варианты двигателя «Флюидайн» с различными способами «пере­дки» энергии.

Ра. шость давлений; б качающийся стержень; в — реактивная струя; 1 — горячая теть; 2 — холодная полость; 3 —шарнир; 4— восстанавливающая пружина.

«■тему. Система совершает угловые перемещения, и, поскольку темпа» конструкция является жесткой, эти угловые перемеще­ния передаются столбам жидкости вытеснителя, где они ней­трализуют вязкие потери и поддерживают устойчивые коле­бания.

В двигателе «Флюидайн» с реактивной струей, так же как ii и двигателе, использующем разность давлений, имеется объ — ( чиненная холодная полость. Холодная и выходная трубы со­единяются с горячей трубой у ее основания. Такое соединение обеспечивает эффект реактивной струи. При перемещении вниз
мениска в горячей полости часть жидкости отводится по на­правлению к холодной полости, что заставляет столб жидкости в холодной трубе перемещаться вверх, а при обратном ходе жидкость, направляющаяся в горячую трубу, заставляет поток из холодной трубы двигаться в вытеснителе с ускорением. Тем самым как при ходе вверх, так и при ходе вниз достигается

Jc—-

IL

Ь,

H7

‘/s

D

А

W/////z

К

V//////>/J

‘/и.

T

1

G //

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Jc

PL

T

Z

2

I,

//

V/

К

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.39. Последовательные этапы «самозапуска» двигателя «Флюидайн».

А — начальное положение перед пуском; б — фаза расширения; в —первичное перерегули­рование: г—вторичное перерегулирование; д — фаза самовозбуждения.

Эффект реактивной с, труи. Однако реальные процессы, проте­кающие в этом гидравлическом соединении, исследованы еще недостаточно [11]. Несмотря на это, модификация с реактив­ной струей является наиболее распространенной среди двига­телей «Флюидайн». Рабочий цикл двигателя с реактивной струей будет рассмотрен ниже.

Теперь же подробнее рассмотрим процессы, последователь­но протекающие при пуске двигателя «Флюидайн», поскольку одна из важнейших его особенностей — возможность «самоза­пуска».

Последовательность процессов при самозапуске показана на рис. 1.39. В положении предпускового равновесия уровни жидкости hu h2 и h3 определяются величинами статического давления в трубах. Если давление в рабочих полостях пере-
мсиного объема равно атмосферному, то все уровни одинако­вы (отметим, что уровни hi и h2 в этот момент всегда одина­ковы). При подведении тепловой энергии к правой трубе 1емпература рабочего тела возрастает, и оно расширяется. Дав — и’ние в рабочих полостях также возрастает, и из-за этого уров­ни жидкости в горячей и холодной трубах также начинают снижаться. Одновременно повышается уровень жидкости в вы­ходной трубе. Следует отметить, что все изменения уровня жид­кости весьма незначительны. Первичное расширение приводит к самозапуску устройства только по достижении критического шачения параметра Tss, зависящего от основных значений па­раметров, определяющих условия работы двигателя:

/Температура на> горячей стороне,]

Ы

/ Температура на ^холодной стороне/

/Температура на> горячей стороне,)

1+1

( Температура на ^холодной стороне/

Эта формула основана на анализе явления, подробно рассмат­риваемого в разд. 1.6. Для большинства двигателей «Флюи — 1айн» Tss ~ 0,1.

По окончании фазы первичного расширения уровень жидко­сти в выходной трубе продолжает повышаться благодаря инер­ции движущейся жидкости. Уровень жидкости на горячей сто­роне продолжает падать, пока не будет достигнуто равнове­сие между жидкостью и рабочим телом. В этот момент уровень жидкости в трубе с холодной стороны выше, чем в трубе с горя­чей стороны. Это состояние, заключающееся в последователь­ности фаз, сменяющих друг друга при пуске двигателя, полу­чило название «первичное перерегулирование».

Как только под действием силы тяжести прекращается дви­жение жидкости вверх в выходной трубе, стабилизируется и ровень жидкости на горячей стороне; одновременно появляется тенденция к выравниванию уровней жидкости на горячей и хо­лодной сторонах. Следовательно, уровень жидкости в горячей трубе повышается, а в выходной понижается. Одновременно объем нагретого газа и его давление в рабочей полости умень­шаются из-за понижения температуры в этой полости, обуслов­ленного повышением уровня жидкости в горячей трубе и соответствующим уменьшением количества рабочего газа, под­вергающегося нагреву. Этим процессам способствует продолжаю — цееся движение вниз уровня жидкости в выходной трубе, вызы­вающее существенный динамический напор в гидравлическом соединении и дополнительное повышение уровня в трубе на го­рячей стороне. Действуя совместно, эти процессы вызывают возрастание уровня жидкости в трубе на горячей стороне до величины, превышающей уровни в других двух трубах. Это состояние называют вторичным перерегулированием. Оно приво­дит к дальнейшему возрастанию гравитационного потенциала между менисками.

В этот момент система находится в состоянии неустойчиво­го равновесия, и уровни жидкости начинают перемещаться в направлении к состоянию устойчивого равновесия. Уровень жид­кости на горячей стороне понижается, что позволяет большему количеству рабочего тела получать энергию от источника энер­гии. Рабочее тело расширяется, и процесс начинается вновь,

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

Рис. 1.40. Насос «Флюидайн» с прямым нагнетанием.

1—холодная полость; 2 — горячая полость; 3 — насосное устройство.

Однако теперь колебания становятся самовозбуждающимися и устойчивыми.

Рабочий цикл, описанный выше, имеет ту же физическую основу, что и цикл системы с двумя U-образными трубами.

«Флюидайн» может работать как в «мокром», так и в «су­хом» режиме. В первом случае существует контакт между вы­тесняемой жидкостью и рабочим телом. Во втором поверхности жидкости и рабочего газа разделены либо слоем «инертного» газа, либо механическим поплавком. Энергия в «Флюидайне» вырабатывается в виде колебаний жидкости в выходной трубе, и это особенно удобно для использования двигателя в качестве нагнетательного устройства. (История техники знает очень по­хожее устройство — насос Хэмфри с незамкнутым рабочим цик­лом.) Нагнетательный эффект достигается двумя основными способами, известными как прямое и косвенное нагнетание [12]. В первом случае выходная, или резонансная, труба полностью преобразована в нагнетательную часть насоса, в то время как при косвенном нагнетании резонансная труба остается в перво­начальном виде, а нагнетательный эффект достигается с по­мощью отдельного канала, соединенного с холодной полостью (рис. 1.40, 1.41).

В случае косвенного нагнетания трудно осуществить «само — tanycK» и необходимы специальные дополнительные устройства, такие, как сливной тракт, встроенный параллельно выходной грубе и действующий как первичное нагнетающее устрой­ство [13].

Необходимо отметить также, что в «мокром» «Флюидайне» невозможно установить регенераторы с насадками, поскольку они не слишком эффективны в атмосфере тумана, образуемого

КАК РАБОТАЕТ ДВИГАТЕЛЬ СТИРЛИНГА?

1’ис 1.41. Насос «Флюидайн» с косвенным нагнетанием. 1—резонансная труба; 2 — насосное устройство; 3—клапаны.

Парами жидкости. Отсутствием регенератора в «мокром» «Флюи — 1айне», вероятно, можно объяснить, почему такие двигатели имеют очень низкий КПД. Однако следует принять во внима­ние и то, что «мокрый» «Флюидайн» может работать только при температурах порядка 350 К (77°С) и разности температур при подводе и отводе тепла не более 25°С. При таких условиях КПД цикла Карно меньше 10 %.

15 двигателях Стирлинга, рассмотренных выше, использова­лось газообразное рабочее тело; даже в «мокром» «Флюидайне» рабочее тело в подавляющем большинстве случаев газообраз­ное. В настоящее время выдвигают предложения по использо­ванию рабочих тел с изменяющимся фазовым состоянием, на­пример таких, которые применяют в паровых машинах и па­ровых турбинах, однако пока нет сведений о том, что такие устройства успешно работают или по крайней мере разработа­ны. Английский инженер Мелоун еще в 30-е годы построил пшгатель возвратно-поступательного действия с замкнутым никлом, используя в качестве рабочего тела жидкость [14]. Уокер [7] предполагает, что двигатель Мелоуна в действитель­ности является двигателем Стирлинга, и единственная публи­кация Мелоуна как будто бы дает дополнительные основания

4 Зак. 839 для такого предположения. Однако более внимательный анализ и последовавшее детальное обсуждение этого вопроса в коллек­тиве исследователей, работающем в этой области под руковод­ством проф. Уитли в Калифорнийском университете (Сан-Ди­его, США), привели к выводу, что скорее всего двигатель Мелоуна работает по циклу, напоминающему цикл двигателя Стирлинга, однако имеющему существенные отличия. В то же время двигатель Мелоуна после небольшой модификации может в точности соответствовать двигателю Стирлинга. Тем не ме­нее остается невыясненным ряд вопросов относительно принци­пов работы двигателя Мелоуна даже в его первоначальном виде, поэтому мы считаем преждевременной попытку описания его рабочего цикла.

Рабочие циклы различных форм двигателя Стирлинга, пре­образующих тепловую энергию в механическую, уже нами описаны. Все эти двигатели имеют одни и те же основные принципы работы, однако есть и некоторые различия в конст руктивном воплощении, особенно там, где дело касается спо­собов использования вырабатываемой энергии. Схематические диаграммы и детальные описания, хотя и весьма полезные для облегчения понимания основных принципов, на которых осно­ваны эти двигатели, не всегда облегчают дело, когда надо определить, относится ли рассматриваемое устройство к двига­телям Стирлинга. В следующем разделе приводятся фотогра­фии и описания уже построенных двигателей Стирлинга раз­личных видов, что позволит устранить эти трудности.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *